
Pergamon 
fnr. J. Hear Mass Transfer. Vol. 39, No. 15, pp. 31X7-3191, 1996 

Copyright Q 1996 Elsevier Science Ltd 
Printed m Great Britain. All rights reserved 

0017-9310196 $15.00+0.00 

0017-9310(95)00393-2 

Effect of two-dimensional conduction in the 
condensate film on laminar film condensation on 
a horizontal tube with variable wall temperature 

Y.-Q. ZHOUt and J. W. ROSES 
Department of Mechanical Engineering, Queen Mary and Westfield College, University of London, 

London El 4NS, U.K. 

(Received 24 February 1995 and infinalform 10 November 1995) 

Abstract-Earlier solutions of the problem of laminar film condensation on a horizontal tube with variable 
surface temperature have assumed locally radial conduction across the condensate film. The present paper 
describes an investigation of the effects of two-dimensional conduction, inevitably present when the surface 
temperature of the tube is non-uniform. It was found that the simple approach is conservative and only 
significantly in error for (pkm/ppgd3hfJ”4 3 about 0.01, i.e. around the highest value which might be 
found in practice of the dimensionless parameter. When the streamwise convection term is included in the 
energy equation for the condensate film, the results depend (very weakly) on the additional parameter 

ppgd’c,/pk, but are negligibly affected in the practical range. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

The various improvements (boundary-layer treat- 
ments including inertia and convection terms and 
shear stress at the condensate surface) which, fol- 
lowing the advent of computers, have been made to 
the original Nusselt [l] analysis of laminar film con- 
densation of a ‘stationary’ vapour on a horizontal 
cylinder (see Fig. l), have shown Nusselt’s analysis 
for uniform surface temperature to be remarkably 
accurate$ for the practical ranges of the relevant par- 
ameters. The Nusselt result for the mean heat-transfer 
coefficient may be written 

“4. (1) 

Noting that experiment (see for instance [2]) and con- 
jugate (vapour-to-coolant) solutions [3] showed sig- 
nificant temperature variation around the tube surface 
during condensation, and that this could be approxi- 
mated by a cosine surface temperature variation, 
Memory and Rose [4] solved the Nusselt problem 
with a prescribed surface temperature distribution 

Z-0 = aces++ I+o. (2) 

This gives, for the vapour-to-surface temperature 
difference 

t Nippon Otis Elevator Co. KSP 3-2-1-Sakato, Takatsu- 
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1 Author to whom correspondence should be addressed. 
§The accuracy of Nusselt’s coefficient of 0.725, obtained 

using two integrations by planimetry, is also noteworthy. 

where 

AT= AZ-(l--Aces+) (3) 

A=a/AT O<A< 1. (4) 

With the Nusselt assumptions (apart from that of 
uniform surface temperature) this leads to the fol- 
lowing equation for the local condensate film thick- 
ness : 

sin&+4~cos+2(1-Acos~) =O 
d6 3 

(5) 

where 

condensate 

\ i 

vapour 

Fig. 1. Film condensation on a horizontal tube-physical 
model and co-ordinates. 
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NOMEN4XATURE 

A defined in equation (4) T defined in equation ( 12) 
(I defined in equation (2) u streamwise component of velocity in 
B defined in equation (17) condensate film 
(‘P isobaric specific heat-capacity of ?’ radial distance from tube surface 

condensate .P defined in equation (13) 
d diameter of tube Z dimensionless local film thickness 
Gr pi$d31~’ defined in equation (6). 

.Y specific force of gravity 
h 
kf8 

specific enthalpy of evaporation 
thermal conductivity of condensate Greek symbols 

m local condensation mass flux 1 local heat-transfer coefficient 
Nu Mean Nusselt number, @d/k 2 mean heat-transfer coefficient 
Pr wplk AT local vapour-to-surface temperature 

4 local heat flux difference 

4* dimensionless heat flux defined in AT mean vapour-to-surface temperature 
equation (7) difference 

4 mean heat flux 6 local condensate film thickness 
R radius of tube P viscosity of condensate 
Ra Gr*Pr P density of condensate 
i defined in equation (15) P\ density of vapour 

To local surface temperature of tube P P-Pv 
T" mean surface temperature of tube 6 angle measured from top of tube. 

(6) 
the conjugate analysis of Honda and Fujii [3] (who 
considered two-dimensional (2D) conduction in the 
tube wall) the local condensation mass flux at the 

When a, and hence A, are zero equation (5) reduces 
to the Nusselt form. 

Memory and Rose [4] solved equation (5). subject 
to the condition that z remains finite at 4 = 0. for 
values of A in the range 0-l. The dependence on 4 of 
local dimensionless film thickness and heat flux 
differed markedly (for A > 0) from the Nusselt iso- 
thermal surface result. In the limiting case. A = I( the 
dimensionless heat flux, given by 

(7) 

increased from zero at C$ = 0 to a maximum of around 
1.15 at 4 z 27~/3 before decreasing to zero at 4 = 7~. 
In the Nusselt case q* decreases monotonically from 
around 0.9 at C$ = 0 to zero at C$ = n. However, it was 
found that the mean heat-transfer coefficient 
(a = g/AT) for the whole tube was virtually constant 
and given by 

“4 

for all values of A. Thus, even in the presence of strong 
surface temperature variation, the Nusselt result (with 
ATreplacing uniform AT) was shown to be extremely 
accurate for the purpose of calculating the mean heat- 
transfer coefficient. 

Both in the solutions of Memory and Rose [4] and 

surface of the condensate film was taken as 

4 kAT 
“’ = hf, = h,b 

i.e. assuming locally uniform radial conduction across 
the thin condensate film. For the case where the outer 
and inner surface of the condensate film have uniform 
temperatures, this would be expected to give satis- 
factory results. The extent to which this assumption 
affects the results when the tube surface temperature 
is non-uniform is investigated in the present paper. 

ANALYSIS 

Two-dimensional conduction in the condensate$lm 
Without the assumption of radial conduction in the 

condensate film, the condensation mass flux is given 

by 

,_<$ 

where J’ is radial distance outward from the tube 
surface. 

The differential equation for the film thickness then 
becomes 
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dz 4 
sin$a +jzcosb+2 = 0 (11) 

where 

T -T T,--T T”=“=_ 
L-TO dT 

(12) 

(13) 

and T” satisfies the conduction equation for the con- 
densate film 

I a _aF ( 1 
2” 

7% rz _tLa=O 
~2 a@ (14) 

where 

i = (RS-y)/R. (15) 

Uniform temperature at the condensate surface gives 
the boundary condition 

T=O atP= l+i= 1+2Bz”4 (16) 

where 

B = (@AT/ppgd3h,)“4. (17) 

The cosine surface temperature distribution [equa- 
tions (2)-(4)] used by Memory and Rose [4] gives a 
second boundary condition 

P= l-ACOS~ atr”= 1. (18) 

In addition, by symmetry, there is no heat flux across 
the vertical plane through the condensate film at the 
top and bottom of the tube so that aT/ja$ is zero at 
4 = 0 and I$ = K. 

The following iterative procedure was adopted for 
solving equations (11) and (14) simultaneously: 

A first estimate of (aT/jay7,=, was made assuming a 
linear temperature drop across the condensate film as 
used in Memory and Rose [4], i.e. 

(aTpjj)y=, = - (1 --A cam 4). (19) 

Equation (11) was then solved numerically (Runge- 
Kutta) for a specified value of A to give a first approxi- 
mation for z(4). Equation (14) was then solved 
numerically (finite difference, 30 x 40 grid points) 
using the first approximation for z(4) in boundary 
condition equation (16) and with a specified value of 
B, together with equation (18) and @/ad = 0 at C$ = 0 
and r$ = n. From the solution we obtain 

aT ( > i=, +2B._1!4 and hence 
aT 

z ( > % p=, 

On the basis of the new and initial values of 
@/a?)),=,, and using a suitable weighting factor, a 
revised estimate was made for the next solution of 
equation (11). The process was repeated until a 
desired degree of convergence [of z and (aF/ja_Q),= ,] 
was achieved. As a check on the solution, the heat- 
transfer rate for the whole tube, determined from the 
radial temperature gradient at the outside surface of 
the condensate film, was compared with that found 
using the gradient at the tube surface. The difference 
between 

was less than 1% in all cases. For values of B < 0.01 
the difference was less than 0.1% for all A. 

In all cases, as found by Memory and Rose [4] 
for radial conduction across the condensate film, the 
value of G* B [i.e. the coefficient in equation (8)] was 
insensitive to the value of A. The dependence of x - B 
on B is summarized in Table 1. It is seen from Table 
1 that only at extreme values of B is the mean Nusselt 
number given by equation (1) significantly in error 
(by around 15% at B = 0.1) and in this case equation 
(1) is conservative. For the normal range of values of 
B (B < 0.01) the error in the mean Nusselt number 
given by equation (1) is negligible. 

Figures 2 and 3 compare the dimensionless film 
thickness and dimensionless surface heat flux with 
those obtained in the 1D conduction approach of 
Memory and Rose [l]. It is seen that for B = 0.01 the 
2D analysis leads to marginally thinner condensate 
films and marginally higher heat fluxes, consistent - 
with the higher values of Nu - B given in Table 1. For 
B < 0.01 the present solutions for z and q* virtually 
coincide with those of Memory and Rose [4]. 

Streamwise convection 
It might be thought that, in the presence of varying 

surface temperature, the heat-transfer to the tube 
might be influenced by streamwise convection. When 

Table 1. Dependence of Nu * B on B 
- 

B Nu*B 

0.0001 0.728 
0.001 0.728 
0.01 0.739 
0.1 0.836 
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Fig. 2. Dependence of dimensionless film thickness [see equation (6)] on angle. Lines denote present results. 
Points denote solutions of Memory and Rose [4]. 
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Fig. 3. Dependence of dimensionless heat flux [see equation (7)] on angle. Lines denote present results 

Points denote solutions of Memory and Rose [4]. 
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the streamwise velocity component u is included, before using equation (23) in place of equation (14) 
equation (14) becomes for values of Ra up to 1015. The results obtained 

differed negligibly from those obtained earlier. 

(21) 
CONCLUSION 

and Even in the presence of strong surface temperature 
variation, the ID conduction approximation for the 

(22) . 
condensate film leads to negligible error in the prac- - 
tlcal range of the parameter B = (pkAZ’/ppgd3hc)““. 
For extreme values of B the 1D analysis is conserva- 

After substituting for w from equation (22), equation 
(21) may be written in terms of the dimensionless 

tive. Streamwise convection has negligible effect on 
the heat transfer for the practical ranges of B and Ra. 

variables 
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